Üyelik Girişi
Kategoriler
Videolar
Site Haritası
sinav

protein metabolizması

                                               BİYOKİMYA     

 Biyokimya, adından da anlaşılacağı gibi canlı organizmalar ve bu organizmaları meydana getiren hücrelerde meydana gelen metabolik faaliyetleri inceleyen bilim dalıdır.

 Aynı zamanda biyokimya, moleküler biyoloji ile sıkı bir ilişki içerisindedir.Biyokimya konusunda esas olarak canlı hücrelerinde cereyan eden kimyasal tepkime basamaklarını, bu basamaklara etki eden katalizör görevindeki enzimleri, fotosentezi ve solunum konusunu ele almaya çalışacağız. Bu konular haricinde biyokimya bilim dalının incelediği sayısız metabolik reaksiyon vardır.Örneğin karbonhidrat metabolizması, fotosentezin izlediği alternatif yollar, yağların yıkımı, proteinlerin yıkımı gibi.Sayfamızda bu metabolik olayları özetleyerek tek tek ele alacağız.

Amino Asitler

 Canlı organizmaların temelini nasıl hücreler meydana getiriyor ise, hücrelerin temelinide proteinler meydana getirir.Protein molekülleri hücreyi inşaa eden birer tuğla gibidir.Amino asitler ise proteinleri meydana getiren daha küçük moleküllerdir.Yani amino asitler uzun zincirler oluşturarak proteinleri, proteinlerde kompleks bir şekilde organize olarak hücreyi meydana getirir.

 Tabii karmaşık bir yapıya sahip olan hücre yanlızca proteinlerden oluşmaz.Bunun yanında karbonhidratlar, yağlar, glikolipidler, fosfolipidler ve DNA - RNA molekülleri gibi kimysal maddelerde hücrenin yapısına katılırlar.Fakat proteinsiz bir hücre düşünmek mümkün değildir.

 İlk olarak proteinleri meydana getiren en ufak birim olan amino asitlerin kimyasal yapılarını ve diğer özelliklerini tablo halinde ele alalım.

No : Amino asit Kimyasal formülü M.A. (gr/mol) İzoelektrik nok. Sembolü
1-) Alanin C3-H7-N-02 89 6,0 Ala
2-) Arjinin C6-H14-N4-O2 174 11,15 Arg
3-) Asparagin C4-H8-N2-O 132 5,41 Asn
4-) Aspartik asit C4-H7-N-04 133 2,77 Asp
5-) Fenil alanin C9-H6-N-O2 ~ 165 5,48 Phe
6-) Glutamin C5-H10-N2-O3 146 5,65 Gln
7-) Glutamik asit C5-H9-N-O4 147 3,22 Glu
8-) Glisin C2-H5-N-O2 75 5,97 Gly
9-) Histidin C6-H8-N3-O2 144 7,47 His
10-) İzolösin C6-H13-N-O2 131 5,94 İle
11-) Lösin C6-H13-N-O2 131 5,98 Leu
12-) Lizin C6-H14-N2-O2 146 9,59 Lys
13-) Metionin C5-H11-N-O2-S 149 5,74 Met
14-) Prolin C5-H9-N-O2 115 6,3 Pro
15-) Serin C3-H7-N-O2 105 5,68 Ser
16-) Sistein C3-H7-N-O2-S 121 5,02 Cys
17-) Treonin C4-H9-N-O3 119 5,64 Thr
18-) Triptofan C11-H8-N2-O2 ~ 204 5,89 Trp
19-) Tirozin C9-H7-N-O3 ~ 181 5,66 Tyr
20-) Valin C5-H11-N-O2 117 5,96 Val

 Tablomuzda, doğada en çok bulunan 20 tane amino asitin kimyasal formülleri ve özellikleri verilmiştir.Bunun yanında bilinmeyen amino asitlerde vardır.Bir kaç örnek verelim ;

 Hidroksiprolin, metilizin, fosfoserini iyodotronin vs. gibi.Fakat bu amino asitler ender rastlanan amino asitler olup hücre içinde en çok rastlanılanları tabloda verdiğimiz 20 tanesidir.

 Amino asitler üzerlerinde belirli miktarlarda elektrik yükü taşırlar.Bu elektrik yükleri (+ veya -), asit veya baz özelliği gösteren bir ortama girdiklerinde nötrleşmeye başlarlar.Fakat bu nötrleşme ortamın pH ' ına bağlıdır.Bir amino asit ancak belirli bir pH noktasında nötr hale gelebilir ki bu pH seviyesine o amino asitin " İzoelektrik noktası " denir.Örneğin Histidin amino asiti, ancak pH ' ı 7,47 olan bir sıvı içerisinde nötr hale gelebilir.Yani bazik bir ortamda.

 Dikkat edilecek en önemli nokta moleküllerdeki atomlardır.Bu atomlardan C (karbon), N (azot) ve H (hidrojen) molekülün yapısına en çok giren atomlardır.Fakat aralarındaki en önemli atom ise karbon atomudur.Karbon, atom numarası 6 olan eşsiz bir yapıya sahiptir.Doğada saf olarak grafit ve elmas halinde bulunan karbonun yapısına girmediği bileşik hemen hemen yok gibidir.Bu özelliği sayesinde yüzbinlerce kimyasal bileşik oluşturduğu bilinmektedir.Elimizdeki deriden arabalarımızın lastiklerine, bilgisayarımızdan ayakkabılarımıza kadar her yerde karbonlu bileşikler vardır.

 İkinci dikkat edilecek nokta ise lösin ve izolösin amino asitlerin molekül formülleri ve molekül ağırlıkları birbirinin aynı olmasına rağmen isimlerinin farklı olmasıdır.Bunun nedeni ise bu moleküllerin 3 boyutlu yapılarının birbirinden farklı olmasıdır.

 Lösin ve izolösin, doğada var olan amino asitlerin D ve L konfigürasyonlarına bir örnektir.Çünki doğada amino asitler iki konfigürasyonda bulunabilirler.Bunlardan birinci konfigürasyon D, ikinci konfigürasyon ise L adını alır.Bu şekilde adlandırılmasının nedeni, aynı yapıya ve formüle sahip moleküllerin arasındaki farkın yanlızca H ve 0H atomlarının yerlerinin değişik olmasından dolayıdır.

 Şekilde " Alanin " amino asitinin doğada bulunan iki konfigürasyonunu görmektesiniz.
 Her iki molekülün yapısı aynı olmasına karşın H ve NH2 (amino grubu) molekülünün yerleri değişiktir.Bu şekilde özellik gösteren yani kapalı formülleri aynı fakat üç boyutları farklı olan moleküllere " İzomer " molekülleri adı verilir.

 Canlı organizmaların yapısında ise yanlızca L konfigürasyonundaki amino asitler bulunmuş olup çok ender olarak bazı hücrelerde D konfigürasyonuna sahip amino asitlerede rastlanılmıştır.  

 Amino asit molekülleri, bir ucunda " Amino grubu (NH2) " diğer ucunda ise " Karboksil (COOH) " grubu taşırlar.İşte amino asitlerin yan yana gelip zincirler oluşturarak proteinleri sentezlemesi, bu iki grubun aralarında kovalent veya iyonik bağ yapmasıyla gerçekleşir.

 İki amino asit yan yana geldiklerinde COOH ve NH2 grupları arasında bağlanma meydana gelir ve bu bağa
" Peptid " bağı adı verilir.Bağlanma sırasında ise bir su molekülü sebest kalır.İki amino asitin yanlızca uç kısımlarını yani karboksil ve amino gruplarının nasıl bağlandını birde reaksiyon şeklinde görelim.

COOH   +   NH2  <-------------------->  CO -- NH   +   H2O (su)

 Denklemimizde COOH 1.aminoasitin bir ucu, NH2 ise 2.amino asitimizin diğer ucunu temsil etmektedir.Bu uçlar yanyana geldiklerinde COOH grubundan bir oksijen ve NH2 grubundan bir hidrojen serbest kalır.Böylelikle serbest kalan bu atomlar aralarında bağ yaparak suyu oluşturur.

 CO ile NH arasındaki bağ ise " Peptid " bağıdır.İki amino asitin yanyana gelmesiyle oluşan peptid bağına
" Dipeptid", üç veya daha fazla (yüzlerce yada binlerce) amino asitin yanyana gelmesiyle oluşan zincirdeki peptid bağlarına ise " Polipeptid " adı verilir.

 Proteinler düz amino asit zincirlerinden meydana gelmesine rağmen oldukça karmaşık yapılara sahiptir.Bunun nedeni ise zincirdeki bazı amino asitlerin birbirleriyle ikinci veya üçüncü bir bağ yapmasındandır.(Bkz. Temel bilgiler sayfası "Proteinler" bölümü).Proteinler hücre için mutlaka gerekli moleküller olup bazı proteinler enzim yapısındadırlar ve hücre içerisinde sürekli olarak kimyasal reaksiyon basamaklarına katılarak metabolik faaliyetleri düzenlerler.

 Hücre amino asitleri yan yana getirip proteinleri sentezlediği gibi aynı şekilde vücuda alınan proteinleride en küçük birimlerine kadar ayırır.Örneğin gıda olarak tüketilen et, yumurta, süt ve yoğurt gibi besinler bol miktarda protein içerir.Fakat hücrelerin her zaman proteine ihtiyacı olmaz ve bu proteinleri amino asitlerine kadar parçalarlar.

 Moleküllerin vücuda alındıktan sonra parçalanması olayına " Katabolizma ", vücuttaki küçük moleküllerden daha büyük başka moleküller sentezlenmesi olayına ise " Anabolizma " denir.

Proteinlerin Yapısı Ve Yıkımı
 Proteinler fiziksel yapıları itibariyle iki ana gruba ayrılırlar.

 Birinci grup " fibröz " proteinlerdir.Bu proteinler özellikle deri, tendon (kasları kemiğe bağlayan sert doku) ve kemik dokularda bulunur.Fibröz protein suda çözünmemekle birlikte fiziksel olarak oldukça dayanıklı bir yapıya sahiptir.

 İkinci grup ise " Globular " proteinlerdir.Globular proteinlerde fibröz proteinin aksine suda çözünebilirler ve fiziksel olarak dayanıklı değillerdir.Globular proteinler ekseri olarak " Enzim " yapısındadırlar.Enzimler ise hücre içerisindeki sitoplazmada kimyasal reaksiyonarı katalizlerler.

 Bunun yanı sıra proteinler 3 boyutlu yapıları itibariyle dört farklı konfigürasyonda bulunurlar.
 Bu konfigürasyonlar sırasıyla ;

  • Primer
  • Segonder
  • Tersiyer
  • Kuaterner  yapılarıdır.

1-) Primer yapı :

 Bir proteinin primer yapısı yanlızca amino asit moleküllerinin yan yana gelip zincir oluşturmalarından ibarettir.

 Şekildede gördüğünüz gibi polpeptid zinciri yanlızca amino asit moleküllerinin yan yana dizilmesinden oluşmaktadır.Yapıda R harfiyle gösterilen bölge " Radikal " grubunu temsil ediyor olup amino asitten amino asite bu molekül grubu değişmektedir.

 Mesela Alanin amino asitinde R grubu CH3 yani metil grubudur.Fakat İyodotronin amino asitinde metil grubunun yerini iyotlu bir bileşik alır.

2-) Sekonder yapı :

 Sekonder yapı, primer yapıdan sonra gelen biraz daha kompleks bir yapıdır.Bu yapı tıpkı DNA zinciri gibi heliks dönümleri yapar ki bu şeklinede Alfa - heliks adı verilir.

 Şekilde Alfa - heliks kıvrılmasının ilk aşamasını görmektesiniz.Bu aşamada zincir bükülmeye başlar ve COOH yani karbonil grubu ile NH' yani amino grubu arasında H bağı oluşmaya başlar.
 Bu bağ fiziksel olarak kuvvetli bir bağ değildir ve dışarıdan verilen ısı veya fiziksel bir hareket ile koparılabilir.Kopmanın etkisiyle zincir yine eski düz halini almaya başlar.

 Heliks yapısındaki bir zincirin enerji verilerek düz zincir haline gelmesi olayına " Denatürasyon " denir.Isı veya kimyasal etkiler ortadan kaldırılınca düz zincirin tekrar heliks yapısını kazanması olayına ise " Renatürasyon " denir.

 Fakat proteinler yapılarının bozulması için verilen ısıya belli bir dereceye kadar tolerans gösterebilir.Yaklaşık 60 derecenin üstünde bir sıcaklık uygulanırsa protein denatüre olduktan sonra tekrar renatüre olamaz.  

 Zincir yukarıdaki şekilde gösterildiği gibi kıvrılmaya başladıktan sonra yandaki gibi heliks halini almaya başlar.

 Proteinlerin önce düz zincir halinde oluşmaları ve daha sonra heliks yapısını kazanmaları tamamen enzimatik kontrol altındadır.

 Eğer üretilecek protein bir enzim olacaksa, enzimden enzim üretme gibi bir durum ortaya çıkmaktadır.

 Soldaki şekilde görülen yapı ise proteinin segonder formunun daha değişik bir şekli olan ve ß - tabakası adı verilen bir konfigürasyondur. Bu konfigürasyonda primer zinciri meydana getiren amino asitler heliks yapmak yerine kıvrılmalar yaparak akordiyon gibi bir hal almıştır. Proteinler ayrı ayrı konfigürasyonlara sahip olabildiği gibi her iki konfigürasyona sahip proteinlerde vardır.


Örneğin bazı proteinlerin % 70 ' i Segonder Alfa - heliks yapısından, geri kalan % 30 ' nu ise segonder ß - tabakasından meydana gelebilir.

3-) Tersiyer yapı :

 Segonder yapıyı takip eden bu konfigürasyonda proteinin yapısı dahada kompleks bir hal almaya başlar.Tersiyer yapı ise, amino asitlerin yukarıda belirttiğimiz R (radikal) yan zincirleri arasında meydana gelen bağlar ile şeklini kazanmaya başlar.

 Tersiyer yapı segonder yapının kıvrılmış halidir.Segonder yapı içerisinde heliks düzeni ve beta düzeninin her ikiside bulunabilir.Hatta bunlara ilave olarak bazı bölgeler, primer ve
" Kangal " adı verilen daha değişik konfigürasyonlara sahip olabilir.

 Protein zincirinin R yan molekülleri arasındaki bağlar ise iyonik, disülfit, H bağı ve hidrofobik (su sevmeyen) bağları olabilir.

4-) Kuaterner yapı :

 En karmaşık şekillere sahip olan kuaterner konfigürasyonundaki proteinler, şekillerini, alt birimler olan radikal ve diğer gruplara bağlı diğer alt gruplar arasındaki bağlar ile kazanır.

 Şekilde kuaterner yapıda bir protein görülyüyor.

 Polipeptid (protein) zincrlerini meydana getiren amino asitlere bağlı R gruplarının kendileride alt birimlere ayrılırlar.Kuaterner yapıyı meydana getiren yapı ise, bu alt grupların arasında meydana gelen iyonik veya H (hidrojen) bağları ile şekillenir.

 Kuaterner yapıya sahp proteinler oldukça karmaşık olmasına karşın enzimler tarafından titizlikle meydana getirilmiş mükemmel moleküllerdir.

 Enzimlerin en ilginç görevleride şüphesiz protein sentezlerinde üstlendikleri görevlerdir.Birincil enzimler primer yapıyı meydana getirdikten sonra devreye ikincil enzimler girer ve primer dizisini sanki matematik hesabı yapmayı biliyorlarmış gibi belirli sıralar atlayarak birbirine bağlamaya başlarlar.Örneğin birinci amino asitin R grubunu, 4 amino asit sırası atlayarak 5. amino asite bağlaması gibi.

 Devreye başka başka enzimler girerek en sonunda proteini tersiyer ve kuaterner yapısına kavuştururlar.Sadece bir molekül olan enzimlerin bu mükemmel görevi kusursuz bir biçimde yerine getirmesi, küçük bir dev olan hücre içerisindeki mucizelerden yanlızca birisidir.

Proteinlerin yıkımı :

Polipeptid zincirleri çok uzun olup yıkılmaları yine enzimler vasıtasıyla olur.Peptid bağlarını kıran enzim ise
" Peptidaz " enzimidir.

 Proteinlerin ayrılma işlemine ise " Hidroliz " denir.Protein zincirleri " Tam hidroliz " yada " Tam olmayan hidroliz " yoluyla parçalanırlar.Tam hidroliz işlemiyle proteinler, kendilerini meydana getiren amino asitlere kadar ayrılırlar.Fakat tam olmayan hidroliz işlemiyle proteinler belirli uzunluklarda kesilirler.

 Şekilde tam olmayan hidroliz olayına bir örnek verilmiştir.8 amino asitlik bir polipeptid zinciri, tam olmayan hidrolizle yıkıma uğratılarak biri 3 amino asitten, diğeri 8 amino asitten oluşan iki ayrı zincire ayrılmıştır.

 Proteinlerin parçalanması ve sindirilmesi ise mide de gerçekleşir.Midede çalışan enzimler, ancak pH ' ı 1 - 2 gibi çok asidik ortamlarda aktivite gösterebilirler.Bu yüzden mide çeperindeki özelleşmiş salgılama hücreleri pepsin adı verilen asit tabiatlı bir sıvı salgılar ki bu sıvı mide sıvısının pH 2 ını enzimlerin çalışacağı noktaya, yani pH ' ı
1 - 2 seviyesine kadar düşürür.

 Mide bu derece güçlü asidik bir sıvıya yataklık yapmasına rağmen zarar görmez çünki mideye zarar gelmemesi için mükemmel bir şekilde önlem alınmıştır.Yine mide çeperlerinde bulunan özelleşmiş salgı hücreleri, mukus adı verilen bir tür sıvı salgılarlar.Bu sıvı asitli ortam ile mide arasında bir kalkan gibi ödev görerek mideyi korur.

Döviz Bilgileri
AlışSatış
Dolar4.84304.8624
Euro5.67785.7005
Takvim

Ziyaret Bilgileri
Aktif Ziyaretçi2
Bugün Toplam31
Toplam Ziyaret105839